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Abstract--Models for rigid and flexible polymers dissolved at tow concentration in a dielectric New- 
tonian fluid and subjected to shear and electric (or magnetic) fields are developed. The rigid polymers are 
taken to be a rigid spheroid with high aspect ratio and the flexible chains are considered as an elastic dumb- 
bell with a nonlinear spring constanl. Specific calculation schemes are developed for transient shear and/or 
electric fields. Rheo-optical properties such as birefringence and extinction angle are calculated and also 
interesting components for stress tensor are predicted. 

INTRODUCTION 

The coupling of electric (or magnetic) and hydro- 
dynamic fields can be found in a number of fields in- 
volving colloidal dispersions and polymeric liquids. 
The most current examples are processes involving 
ink jet printing, and the coating of record media with 
magnetic particles. Although the cross-discipline of 
electrohydrodynamics [1,2] has a relatively long his- 
to~:, it has not enjoyed a great deal of fundamenlal 
research. For polymeric liquids, although electric and 
hydrodynamic effects have been extensively studied 
separately in the past[3,4], there is a scarcity of reported 
research on the electrohydrodynamic response of 
these materials [5]. 

Dynamics of both rigid and flexible macromole- 
cules dissolved in a dielectric, Newtonian fluid and 
subjected to electric and hydrodynamic tields is con- 
sidered in this paper. Mason and coworkers [6] have 
considered most questions pertaining to large, non- 
Brownian particles at infinite dilution. [keda and co- 
workers [7,8] studied the steady state response of rod- 
like polymer chains with an assumed permanent di- 
pole moment subjected to electrohydrodynamic fields. 
As pointed out by Okagawa et al. [6], l:~owever, the 
assumption employed by Ikeda in {7] that the force on 
the macromolecule arises from the electric field within 
the molecule is not as realistic as utilizing the electric 
fieh:l existing outside the macromolecule. This paper 
focuses on questions involving the role of Brownian 
motion. In addition, transient flow phenomena are 
considered and induced dipole moments are assumed. 

The transient behaviors are considered here, which 
can be compared with the steady state dynamics in the 
previous paper [5]. In addition, both flexible and rigid 
macromolecules are considered. There are practical 
advantages in considering the induced dipole moment 
due to the fact that it is convenient to utilize oscillating 
electric fields in many experiments and such fields are 
not sensitive to the permanent dipole moment if the 
frequency of oscillation is large enough. Oscillating 
fields minimize the effects of Joule heating and elec- 
trophoretic migration. In section 2, the convective dif- 
fusion equation for rigid macromolecules of high as- 
pect ratio is developed. The solution to this equation is 
presented in section 3 and applied to the calculation of 
birefringence, extinction angle and rheological mate- 
rial properties. 

In section 4 a theory for flexible polymer chains is 
presented. Stockmayer and Baur [9] were among the 
first to consider the application of an electric field on 
flexible chains with parallel dipole moments and em- 
ployed the multibead and spring model of Rouse [10] 
and Zimm [11]. For the purposes of this paper, how- 
ever, the simple elastic dumbbell model with both 
linear and nonlinear spring functions was used (see 
reference [4] for a discussion on various mechanical 
models for flexible chains). 

FOKKER-PLANCK DIFFUSION EQUATION 
FOR SLENDER, RIGID SPHEROIDS 

Mason and coworkers [2,6] have worked ,out the 
motion of non-Brownian, spheroidal particles sub- 
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Fig. I. Coord inate  s y s t e m  and ax i s  of  revo lut ion  ,tff 
an a x i s y m m e t r i c  rigid s p h e r o i d  for the spe-  
cific comb ina t ion  of s h e a r  and e lectr ic  f ie lds  

c o n s i d e r e d .  

jected to a simple shear flow and simultaneously acted 
upon by an electric field of an arbitraq, orientation 
with respect to the flow axis. In this paper the specitic 
problem of an electric field, Eo, aligned parallel to the 
direction of the velocity gradient is considered as pic- 
lured in Figure 1. In that case, the equations of motion 
of the symmetry axis of a spheroid would be [6]: 

~= G {r ~ t) sm2cpsin20-~ Gf ' r  sin ~ 

G (r2sin27~+cos2r ~ - ~ l s i n 2 f .  ,12) 
~b= r24_ 1 

Where 0, q: are two Euler angles whieh determine 
the orientation of the spheroid as shown in Figure 1. G 
is the shear rate and r is the aspect ratio of a spheroidal 
macromolecule. The electrohydrodynamic field param- 
eter f '  is the ratio of electric torque to hydrodynamic 
torque as defined in reference [6]. When r > l ,  this 
parameter is the following [6] : 

1 f, = 4~reoK,E~P (% r) (r + r -  ) (3) 

( 3 A - 2 )  ( q -  1) 'Q (r) 
P (q, r ) =  8~r (2+ (q_ 1)A! [ (q_ 1 ) A _ q  3 (4) 

2r2~ (1 -  2r~)A 
Q (r) = 4 ( r2+ l )  (51) 

and 

r 2 t arccosh (r) 
A -  (6) 

r ~ - 1  (r 2 -1 )  ' / '  " 

Here % is the permittivity of free space, 72 is the 
viscosity of suspending Newtonian fluid, and K 2 is the 
dielectric constant of suspending fluid, q is defined as 
the ratio of dieleetrie constant of a macromolecule to 
that of the fluid. We shall focus our attention on the 
problem of rodlike chains of high aspect ratio. As r 
tend to infinity, f' can be shown to have the fol]owing 
asymptotic form: 

f ,  ~oK~E~Iq-1) ~ l n ( 2 r )  " O ( r  1, t i (7/ 
47t + iYd  r ' 

Thus equations (l) and (2) become 

l . . f '  2 (~, 0= TGsmgT,  san20-,~ ~ G s i n  r ) (8) 

~b = - Gsin '  ~ + f '  Gsin2 ~ + O (11). (9t 
r / - -  

W h e n  the Brownian motion is present, it is neces- 
sary to introduce an orientation distribution function 
llr (0, ~ :t) which prescribes the probability that a chain 
has a paticular orientation. The normalized diffusion 
equation describing the evolution of it r is: 

6 a l g  Orr +#f~ '  ~ ' + f ~ '  I t -  A ~ = 0 .  (10'~ 

Where f = f'/9 / r. fl = G/Dr is the dimensionless veloci- 
ty gradient and r = D,t is a dimensionless time. Here 
D~ is the rotational diffusivity of the maeromolecule 
[4]. The normalization condition for ~ is the, follow- 
ing: 

fo ~d 0sin 0 /" '~d 7~ 1t r= 1. (11) 

The operators Q1, g 2 and A in (10) are: 

~ , =  & sin ~cos ~ O~0- (sin' 0cos 0) - O@(sin' ~) 

(12) 

2 , O . ~ + 2 ~ i s i n f c o s q ~ )  , =  ~ s m  , : P ~ t s m  0cos0) 

(13) 

1 O ( s i n 0 o ~ )  4 1 <:3 ~ 
A = sin0 O0 sin~ 0 07,2" (14) 

The operators ~ is due to the shear tlow and its 
properties are tabulated in reference [4]. The operator 
A is the spherical Laplacian which is also discussed in 
[4]. ~2 is due to the electric field and its properties 
with respect to spherical harmonic functions are tabu- 
lated in Appendix A. 
I .  S o l u t i o n  p r o c e d u r e  
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We shall seek a solution to equation (10) for time 
dependent electric and hydrodynamic fields of the fol- 
lowing form: 

/~=5~g, (r) (15) 

f=fog~ (r). (16) 

Where gl and g2 are arbitrary, dimensionless fun(:- 
tions of r. Furthermore, perturbation solution will be 
obtained assuming both ,80 and fo are less than 1. As 
Kim and Fan [ 12] have shown recently, this manner of 
solution has a finite radius of convergence with respect 
to ,8o, and it is expected that this is also true for fo- Ex- 
panding ~'in a series in powers of fo leads to: 

~ '=  X ~ (17) fo g'~. 
,~=o 

Substituting equation (17) into (10) leads to: 

_O g,, +,8og, { r) ~, ~'o - A lifo = 0 {18) 
O r 

-~) ~'~ +5og, (r) 12~ ~r~ - A t/'~= - g, (r) t2, Fk-~ (19) 
3 r  

~rc f 2 n  
Jo dO~nOJo dT,11r,,=&.0. (20) 

The zero order solution ~'0 is simply the solution 
obtained in reference [13] and [14] for the. case of no 
electric field. Following the procedure m reference 
[13], the distribution function is expanded in terms of 
the velocity gradient ~o and the following solution is 
obtained. 

r 1 7 7  4 Jr,=0 flor {2].) 

_ 0 r - Po (22a) 

1 r = ~ (1; r )P~S,  (22b) 

, , : -  (o, 1; r)po (0. 1; r ) P ; C , +  

(22c) 

1 [ 2 3 ( 0 , 0 , 1 ; r ) + 1 2 ( -  7 7 
r176 10584 3 ' 3 ' 1; r ) ]  

P ; S ,  +--- (22d) 

Here Pn m are the associated Legendre functions and 
C m and S,, denote cos m~p and sin m~ respectively. 
The functions (a,b ;t) in equation (22) are defined as: 

(a, b; t ) = f ~ t ' e  ~' '"g, (t ')f_[dt"e-b"-~'"g, (t '' ) 

(23a) 

In order to solve the combined hydrodynamic and 
electric field problem it is also necessary to define the'. 

following time-dependent functions: 

[(a), b; t ]=f_ ,~t 'e -~"-~ 'g ,  ( t ' ) f [ d t "  e b,e-r.,g, (t") 

(23b) 

Where terms enclosed by ( ) signify integration over 
g2(t) instead of gl(t). 
2. First order solution 

Substituting equation (21) into (19) and (20), the fol- 
lowing equations are obtained: 

F,=  5~_~o ̀ 8/, r , (24) 

O ~b,o 
a ~  - A r = - g2 t2, r (25a) 

0 r  Ar  -g , t a , r162  (25b) 
Or 

The results are: 

1 1 r  ~-[ (1) ;  r iP,  ~-  ~ [(1); r IP ;C ,  (26a) 

1 
r  2~2/8 0, (1)', r ] +  [(0), 1; r l lP~S2q ... .  

(26b) 

1 o 
r i32~P2 ! - 6 [ ( 0 ) , 0 ,  1; rl§ O, (1); r] 

43 [0, (0) , l ;r]~-~[-5 3'7 3'7 1);r) 

5 7 ( 7 ) ,  l; r ] +  [ (_  7 7 
+ 2 - [ -  3 - '  ~ - ) ,3 - ,  1', t i t  

+ ~  P~C~ I84[0, O, (1); r ]+6 [ (0 ) ,  0, 1; r] 

_}_2~ [0, ( 0 ) , 1 ; r ] §  3 '  3 ' 7  7 (1);r]  

7 7 7 7 
+ 3 5 [ - ~ - ,  ( ), l; r) - 3 4 [ ( -  ~ - ) , ~ , 1 ;  r]t 

+ ...... (26c) 

3. Higher order solution 
Second and higher order terms can be obtained 

successively, but for simplicity, only pertinent terms to 
third order in k'o and fo are listed here. 

~,o= - 2 ~(o), (li; r~P ~  __~ ~(o), (1); r iP:C,  

§ ....... (27a) 

r  158~P~$2148 [0, (0), (1); r ]  

+24 [ (0), 0,(1); r] + 3  [ (0), (0), 1; r] 

7 7 7 7 + 6 4 [ -  ~-, (~-), (1); r ] - 8 0 [ ( -  ~-), ~-, (1); r] 
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7 7 . (~-), 1; r ] / §  ...... (27b) -80~( -  ~-), 

~,o= 13~P~18 [ ( -  7-) ,  (73), (I); r] 

-[(0),(0),  (1) ; r ) t+39269P;C,  t24[(_~),7,  (~),7 

(1); r ]  - 3 ( ( 0 ) ,  (0), (1); r ] / +  ...... (27c) 

Terms up to fourth order can be found in APPENDIX 
B. 

PROPERTIES OF THE STRESS AND 
REFRACTIVE INDEX TENSORS 

Once the distribution function is known, the stress 
tensor can be constructed through the Giesekus ex- 
pression given in Bird [12]. Rhea-optical properties 
such as flow birefringence (or dichroism) and extinc- 
tkm angle can be evaluated through expressions dis- 
cussed in reference [15] and [16]. Birefringence ,3 n is 
defined as the difference in the principal values by the 
real part of the refractive index tensor in the plane or- 
thogonaI to the propagation axis of the light in a given 
experiment. The extinction angle Z defines the orien- 
tation of the principal axis of the refractive index ten- 
sor with respect to a laboratory frame. If the light is 
propagating along the z axis the birefringence and ex- 
tinction angle are: 

An=  M [<P~C,> ' - t -  < P~S ,>  ' ]  ~/' (28a) 

tan (2 t') = < P ~ S , > / < P ~ C , >  (28b) 

The shear and normal stress components of interest 
can be shown to be the following [4] : 

t 2 Or < P , S , > -  r.~,- Gr/~= ~-n, ,kT - -  - -  ,gog~ (r) 

1 [ i -  < P ; >  - g < P ; C : , >  ]1 (29a) 

-#og, ( r ) <  P / S , >  / (29b) 

1 8 [ < p o >  
ryy-  r**= - ~-nokT {Or-r 

+ ~-  < P ; C , >  ] } (29c) 

As indicated above, the bulk solution properties 
are all functions of averages over the distribution func- 
tion (as indicated by the angular brackets < > ) of 
various spherical harmonic functions. Using the or- 
tlhogonality properties of these functions it is straight- 
forward to evaluate these averages. The following 
sections consider a number of specific cases. 

I. S teady  s tate  (gt = gz - I) 
At steady state, three integrals are required to cal- 

culate the material functions and optical properties. 
The results are listed below to fourth order in ,8~ and 

[o" 

4 -= 1 -= , ~  3 ,=,  1 6 . ,  
l~5to § 7-~:to,8o. 1 - ~  I o • 1-0~51 o (30a) 

< p ~ s , > � 8 8  19 ~ 3 127 - 3 3~6#o + ~fo#o- i4~t~o 

11 2 31 - 3  
+ 1 ~ 5  f o,8o - ~ t o # o  (30b) 

1 , 4 , lfo+~31oofo#o, <P~>=-- ~d#o+ 5~#o- 

2 f , +  79 -, , 
~ g 5  I~ 

(30c) 

The steady shear viscosity can be obtained by (29a) 
and it is plotted against the dimensionless shear rate 
#o after normalization by its zero field value (the vis- 
cosity in the limit of zero shear and electric fields) in 
Figure 2a. The viscosity is shear thinning for all values 
of the parameter fo which were explored with the rate 
of shear thinning increasing with fo- As is apparent 
from this figure, the zero-shear-rate viscosity (the in- 
tercept in Fig. 2a) increases with increasing with fo. 
This is easily understood by recognizing that the effect 
of the electric field is to align the rods normal to the 
flow direction thereby causing a greater energy dis- 
sipation. The upper bound on fo for each plot was de- 
termined by evaluating the radius of convergence for 
the expansion of equation (17) (typically 4). This was 
accomplished through examination of the coefficients 
for the zero-shear-rate viscosity up to the fourth order 
in fo- This is the same procedure as followed in refer- 
ence [12] although they evaluated many more terms 
for their particular case. 

The first normal stress coefficient was also cal- 
culated and found to follow trends similar to the shear 
viscosity. Plots of this function under steady shear are 
found in Fig. 2b. The steady second normal stress coef- 
ficient is always zero for all values of fo. 

The extinction angle is plotted in Figure 3a. At zero 

electric field, the zero shear intercept is at 45 ~ with re- 
spect to the flow direction and parallel to the principal 
axis of strain in the shear flow. Any finite value of f~, 
however, causes the zero shear intercept to equal 90 ~ . 
Further application of the flow leads to a decrease in 
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(a) 

0.0 
0.0 0.6 1.2 1.8 2.4 3.0 

Shear Rate 

2:.5 (b) 

2:.0 

0.5 

0.0 
0.0 0.6 1.2 t .8 2.4 3.0 

Shear Rate 
Fig. 2. (a) Dimensionless steady viscosity, {b) first 

normal stress coefficient as function of shear 
rate ~o (from the top, fo= 4,2,1,0.5,0). 

the angle towards a zero value. The birefringence is 
plotted in Figure 3b and shows an expected trend as 
the electric and hydrodynamic fields are simultaneous- 
ly applied. For weak fields, the birefringence increases 
as either '80 or fo is increased. For large electric fields, 
however, increasing the flow strength decreases the 
birefringence due to the fact that the two fields tend to 
orien: the rods in orthogona] directions. 
2. Trans ient  e l e c t r o - h y d r o d y n a m i c  f ie ld (gl = 

g2) 
When g~ = g2, the time dependent coefficients in 

equations (28) and (29) can be simplified ,due to the 
fact that there is now no difference between [0,(0),l;rl 
and [(0),0,I ;r]. In the following section, the case of the 
simultaneous inception of the electric and flow fields is 
examined. 
2-1. Simultaneous inception of both fields 

The birefringence resulting from the simultaneous 
application of electric and hydrodynamic fields is 
shown in Figure 4 for flo = 4. A large overshoot occurs 
for sufficiently high flow strength and this overshoot is 
enhanced upon the application of an electric field. The 
extinction angle for the same value of ,8 0 is; plotted in 
Figure 5a. At zero time the angle has a value between 
the limit of 90 ~ (fo~-O) and 45 ~ (fo=0). Figure 5b, 
summarizes this initial value of the extinction angle as 

r 

< 

2.5 

2.0 

1.5 

1.0" 
i 

0.5' 

90 

72 

54 

36' 

18 

0 0.0 0'.6 1.'.2 1:.8 2'.4 3.0 
Shear Rate 

0.0 0.6 1.2 1.8 2.4 3.0 
Shear Rate 

Fig. 3. (a) Steady extinction angle, (b) birefringence 
of rigid spheroid solution as function of shear 
rate flo (from the top, fo=4,2,1,0,5,0). 

2.5 

2 . 0 ~  

= 1.5. 
.r"- 

h3 

0.5. 

0.0 o'.b 210 410 6:0 810 l~. 
i "  

Fig. 4. Unsteady blrefclngence build-up of rigid 
spheroid solution during slmultaneoul) sud- 
den inception of both shear and electric fields 
(,80=4, and frohe top, fo=4,2,1,O,5,0). 

a function of both ,80 and fo. 
The development of stresses following the incep- 

tion of flow is also of interest. Enhancement of over- 
shoot in the shear viscosity is predicted as fo is increas- 
ed as shown in Figure 6. However, the superposifion of 
an electric field onto a shear field wilt not induce over- 
shoot if overshoot does not exist when fo=0. Figure 6 
also indicates that there is a finite jump in the shear 
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Fig. 7. Unsteady first normal stress  coefficient devel- 
opment during s imultaneous sudden Incep- 
tion of both shear  and electric  fields at 80 = 4 
(from the top, fo = 4,3,2,1,0.5,0). 

Fig. 5. (a) Unsteady extincUon angle  change of rigid 
spheroid solution during s imultaneous sud- 
den inception of both shear  and electric f ields 
at ~ "-4 (from the top, fo= 4,3,2,1,0.5,0.01,0), 
(!o) Initial extinction angle  of same experi- 
ment as function of shear  rate ~o(same order 
off). 

Fig. 6. Unsteady viscosi ty  development  during sim- 
ultaneous sudden inception of both shear  
and electric f ields (/9o=4, from the top, fo = 
0,0.5,1,2,3,4). 

slress at zero time following the inception of flow. The 
magnitude of this jump is independent of the value of 
fo. The first normal stress coefficient following the in- 
ception of flow is plotted in Figure 7. Unlike the shear 
stress, the first normal stress differences shows; no 

Fig. 8. The elastic dumbbell  model  and Its coordina- 
tes. 

finite jump at zero time in the absence of an electric 
field. Application of such a field, however, leads to a 
substantial instantaneous jump as shown in Figure 7. 
Although it is not shown here, the second normal 
stress difference also undergoes a finite jump when an 
electric field is applied but the steady state value is 
unaffected and remains at a value of zero. 

KINETIC 3~tEORY FOR FLEXIBLE CHAINS 

In this section the elastic dumbbell model [4] pic- 
tured in Figure 8 is used to describe flexible polymer 
chains subjected to electro-hydrodynamic fieMs. The de- 
velopment of this model proceeds from a force balance 
on the two beads making up the dumbbell. The contri- 
bution to the force balance equations include the hydro- 
dynamic friction, an entropic spring force, a Brownian 
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force araising from the solvent and a force due to the 
electric field. Following Stockmayer and Baur [9], we 
shah assume that the electric field induces a polariza- 
tion of the chain segments which leads to a force on 
the beads. Furthermore, we shall make the simpli- 
fication that the induced dipoles are oriented parallel 
to the chain axis so that the net induced dipole for the 
chain is parallel to the end to end vector _r. The elec- 
trical force acting on the ends of the dumbbell is then 

_F =: 2 g e . r .  I31) 

Where the dimensionless tensor edefines the orienta- 
tion of the applied electric field. The constant g is de- 
fined as 

3 
g = : ~  ( a , -  a=)Eo 2 (32) 

whe re  a~ and a 2 are the induced polar izabi l ies in ex- 

cess of displaced solvent parallel and perpendicular to 
the chain axis respectively. 

From the force balance equations the following dif- 
fusion equation for the probability distribution func- 
tion tr(_r,t) can be obtained. 

7v'~=o a ~  = - r V ' [ K  ( r ) r u  

(33) 

M = Gs ? e__ {34) 

Here .L" is the friction factor of each bead and K(r) is the 
spring constant. G =/=F is the velocity gradient tensor and 
it is apparent from equation (33) that the superposition 
of an electric field onto a flow field merely causes this 
tensor to be replaced with the tensor M. The solution 
of equation (33) and the evaluation of bulk solution 
properties can therefore proceed in the same manner 
as used for purely hydrodynamic problems. 

It i[s useful to make the diffusion equation dimen- 
sionless by introducing a length scale L = Na (the con- 
tour length of the chain) and a time scale ,k =~'L2/ 
12kTN. Here N is the number of submolecules of 
length a making up the chain. The spring constant is 
then taken to be 3kTN/L2E(r). For the linear elastic 
dumbbell model E(r) is 1, and one commonly used 
nonlinear model is the Warner spring, E( o = 1/(1-r2), 
which was used here for calculations. The diffusion 
equation is then: 

a_~_+~,.ot: (,,r+ . . . . .  e).r~'-T~'-<S(r)r~'] 

I ~7' u  (35) 
6N 

The hydrodynamic and electric fields are then char- 
acterized by the dimensionless parameters u = XG and 
f = 4gA/C One immediate consequence of applying an 
electric field is that the "strong flow/weak flow" cri- 
terion discussed by Tanner [17] and Olbricht et al. 
[18] is altered. This condition defines the stale at 
which a dramatic extension from the coiled to the st- 
retched state occurs. The criterion for the present 
model is given by the following inequality: 

k + < 1/2: weak field, coiled configuration 
k + > 1/2: strong field, stretched configuration 

where k + is the largest, positive eigenvalue of ( c~ '+  
f/2e). One would anticipate that for strong fields, it will 
be necessary to utilize nonlinear spring functions, E(r) 
which preserve the finite extensibility of the dumbbell. 

Although calculation were carried out for this mod- 
el, the results are all qualitatively similar to those 
found for the rigid dumbbell model and are not repro- 
duce here. There is, however, a much weaker depend- 
ence by the electric field on the overshoot phenomena 
in material functions for the elastic dumbbell. 

CONCLUSIONS 

The simple rigid and e]astic dumbbell models can 
be used to provide predictions for the response of poly- 
meric liquids to simultaneous hydrodynamic and elec- 
tric fields. Although this problem has been considered 
to a limited extend in the past, the use of electro-hy- 
drodynamic field is becoming increasingly important 
in applications (e.g. fabrication of flexible mass storage 
disks and ink-jet printing). Alternatively, combined 
hydrodynamic and electric fiedls can often be used to 
offer greater insights into the structure of the polymer 
chains themselves (the recent article by van de Ven 
[19] considers this point for spheroidal particles), or to 
alter the rheology of these materials. 
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APPENDIX A. Properties of Operator ,0 2 
The operator f22 has the following properties. 

3 
pm } m,ra+2p-4 m,m+2p-4 ~ ,  I . C . l  = 2;- b . . . . .  _, P . . . . .  _, C .+ ,p_ ,  ( A I )  

t J= l  q = l  

This relationship is true for S,,, if we switch every C,n 
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with S,,. 
The coefficients b's are: 

m::/: 1 

l b ~ t l , m §  = ( n  - -  m - - l )  (n -  m +2) (n+3) 
(2n+ 1) (2n+3) 

b.~._ ( n 2 + n - 3 m  2) 
~ - ( G -  iT T2~T 

( 2 - n )  (n+m)  ( n + m -  1) 
. . . .  (2n-  1) (2n+l)  

(n§ �9 ~ m + 2 _  

b . . . .  - 2 (2n+1)  (2n+3) ( l+&~o]  

- 3  m , m . 2  
b , ~ .  - -  E1 + &,,.o} 

2 (2n- 1) (2n+3) 

( 2 - n )  m , t ~ +  2 _ 

b . . . .  - 2 (2n-  1) (2n+l)  (l+b',~o) 

"~'-'-b...+2 - (n+3) ( n - m + l )  ( n - m + 2 )  

(n - m + 3 )  (n - m+4) , (1 -  b'.~o) 
/2 (2n+l)  (2n+3) 

r e , m - 2  _ _  b..~ - - 3  (n+m) ( n §  1) ( n - r e + l )  

(n - m + 2 )  (1-  b'.~o) 

/2  (2n-  1) (2n+3) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

bmd~--: = (2--n) (n+m) ( n + m -  1) ( n + r n - 2 )  
( n + m - 3 )  (1-  b',,o) 
/2 (2n-  1) (2n4 1) (A10) 

If m = l, we have different formulars. 

bl,, n ( n + l )  (n+3) 3n (n+ l )  (n~3) 
~"+ ' - -2(2n+1)  (2n+3) or 2(2n+1) (2n+3) 

b'" - 5n~+5n - 6 
'~"- 2 (2n-- 1) (2n+3) or 

b . . . .  ( 2 - n ) n  (n+ l )  
~n-2-  2 (2n-  1) ( 2 n + l )  or 

(Al l )  

- (n2+n+6) 
4 (2n-  1) (2n43) 

(A12) 

3 (2-  n)n (n+ l )  
2 (2n-  1) ( .}n+l)  

(A13) 

b~,, _ (n+3) 
'~+'--  2 (2n+l)  (2n+3) (A14) 

1,3 _ _  - -  3 

b ,~ . -  2 (2~-- 1)~(2n § (A15) 

b . . . .  (2 -n )  
~ n - 2 - -  2 (2n- 1) (2n+1) (A16) 

First columns are for C,, and 2nd columns for S m, res- 
pectively. All indicies should be positive or zero, and 
the lower one should be greater than or equal to the 
upper one. 

APPENDIX B. Deta i l s  of  Base  Funct ions  

_ 0 

Ooo- Po (B 1 ) 

P ,S ,  (132) 

~ = - 2 ' - 3 - ~  2 .3.7 ( 3  - ' l ; t ~ P ' ~ 2 4 7  IO, 1;t~P~C~ 2~.3,. 7 [ T , 1 ;  tlP,~C, (133} 

23 1 7 7 1 7 5 
r = / -  2~-3'.7 ~ [ 0 ' 0 ' l ; t ~  2-32-7 ' [ -  3 '  3 ' I ; t ] I P ~ S ' + {  2 ' -3 ' . 7 '  I T  ' 0 ' l ; t ]  22-32-72.11 

(11 7 1 ; t ] i P ; S ~ + {  1 7 1 7 ( 0 ' 7 ' l ; t ] I P * * S ' + 2 5 - 3 ~ . l l ~ 3  3 2 ' -3"7  [ ~ - , 0 , 1 ; t ) +  ~0, T ,  1;t)t  , , 

1 11 7 
P,'S, 2 ' .3 ' -11 (3- '  3 - '  1; t ]P{S,  (B4) 

23 1 7 7 1;t] 5 7 7 5' 
r 1 ~  (0, O, O, 1; t]  + ~  ( 0 , -  ~- ,  ~ - ,  + ~ ( -  .~-, ~ - ,  O, 1; t) + 22 . 32 . 73 .11 

7 7 23 1 7 7 
[ - ~ - , O , ~ - , 1 ; t ] / P ~ -  ( ~ ; [ 0 , 0 , 0 , 1 ;  t ] + - -  [O, - - -  - -  1;t] 2'-3z.7 ' 3 '  3 '  

5 7 7 5 7 7 
+ ~ [ -  ~-,  ~-, 0, 1; t ~ § ~,~_~.~ [ -  ~- ,  0, ~-,  1; t ] / P; C, + extra terms (B5) 
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1 1 t lP~S ,  r - ~ -  ~(1); t ]P,  ~  ~-  ((1); (B6) 

r t~ .7  IO, (1); t l §  [(0), 1; ti} P~S~+ { 1 7 1 ,7 
�9 -2~.32.--~-I~-, (1);t] 2,.32.7 {t~-), l ; t l tP~S~ 

1 7 1 7 
4- l -  2,.32.~ [~-, (1); t) 2,.32. 7 F, (~-), 1; t ~ PtS, (BT) 

r == i_ 32_~ [0, 0, (1);t~ 1 5 7 7 (1 ) ; t~ - - I -7  ~ ! /  1;tD] 22.32.72 ~0, (0),1:t1-~-~.3~2... ~I- 3 '  3 '  3-' '3 " 

32 @ 3~@7 ~ 7 2@7 7 1 7 �9 [(O),O, 1;t]& [(-  7 ) ,~- ,1 ; t ) tP2"+ i~ . ~ I~-,O, ( 1 ) ; t l + ~ [ ~ - ,  (0), 1;t] 

__ 5 [[0, 7 7 1 - 7 5 7 
22.72.11 ~-, ( 1 ) ; t ] +  [0, ( ~ ) ,  1 ; t ] / - .  2'-32-72 I ( ~ ) , 0 ,  1;t~ 2-35-72. 11 [(0), ~ ,  l : t ] tP~  

5 4Fll 7 i l l ,  (7)  + 1;t]}Pg+ [8[0,0, (1);t] 2'.3'.11 " '3- '3- '  (1);t)+ �9 , l : t )  [(2~).3_,7 {12,.33.7 

4 - - [ [ -  (1);t]+ [-  (~) ,  1;tl] +[0, (0 ) , l ; t ]+~- [ (0 ) ,0 ,1 ; t ] ]+  5 7 7 7 7 
2'-3'-7 3 ' -3--' 3-' 

17 7 7 { 1 [[0, 7 @ 2.3,.7,[(-~-),~-,1;t;~P;C,- 33.7.11 ~-,(1);t14-{O,( ),l;t)l 

7 1 (0),7 1;t)}P~C~ 1 7 7 + ( (~) ,  O, 1 ; t~  [ /[ (1); t] 2.32-7'.il 2'-3',11 ' ~ '  

+[131, 7 (131), 7 / ~ 1 ~ [ 8  7 +[37--,(0) l;t~ ( ~ ) , l ; t ) -  [ ~ , l ; t l l P ~ C z -  2,.33.7 , [-3-,o, (1);tl , 

4- 157 [{0, 7 .7 {_ 1 [11[(7) ,0,1; t1+2[(0)  7 , 1 ; t ~ l t p t c ,  2,.33.7,.11 ~ ,  (1);t]+[0, ,~) ,  1;till+ 2~.3,.7.11 

,~11 7 + [ 7 '  ? .(ii) 7 1 / [7 ,  7 4 2,.31,.11 ~c3, 3' (1);t] L ~ ,~ ,  ~ ~ ,  (~) ,  1; t ]+ 1;t]bPlC,+ (1);t] 

�9 (11) 7 +[11, (7)  1 ; t ]§  ~- ,~- ,1; t~tP:C,  (S8) 

r = -  ! ~ [ 1 2 [ 0 , 0 , 0 ,  (1);t)+[O,O, (0), 1 ; t ) l+  [26[0, (0),0, 1;t~+23[(0),0,0, 1;t]~ 

65 7 7 (1);t]+[0, 7 7 1 7 7 
+2.3~.73 [[0, 3 '  3" - ~ .  ( ),1;t1~+2.3~.73 [-58[0, ( - ~ ) , ~ , l ; t ] + 9 I ( 0 ) ,  

7 7 7 7 1 [122[- 7 7. 3"7 37 . . . .  1; t}l+ [ 8 I - 3 , - 3 , 0 ,  (1); t]+[-~3-,~-,  (0) 1;t}~+2~.3~.73-- ~ ,  (~ ) ,0 ,1 ; t l  

- 105 ~. ( - 7 7 5" 277 [ I - '7 7 7 ( 7 ~-),~-,0, 1;t~]+2.3~.7:,.11 _7-,0,~, ( 1 ) ; t ] + ( - ~ , 0 ,  ,~) ,  1;t]l 

5 7 7 '7 7 + ~ [12 [ -  ~-. (0), ~-, 1; t] -- 131 [ ( -  ~ ) ,  0, ~ ,  1; t] ]} P~S~ +extra terms (Bg) 

r : _ ~ 2  [(0), (1) ; t lPg4-1[(7-) ,  (1);t~P,"-3~7.7((O), (1): t~P:C~+~.7 ~ ( 7 ) , .  (1);t~P:C, 

1 ~(7),  (1); t IP,C,  (B10) + ~  , 
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1 
~=,:= 4 ~  ~16(0, (0). (1);t;+8((0)0, (1):t~+ {(0}, (0), 1 ; t ~ + .  ~T7~.7i {16(_ T , 1  7 (T),7 (i);t} 

7 7 (1);t)-20{( 7 7 - 2o [ ( -T ) ,  T, 5) ,  - ~  ~. - (y) ,  l ; t j J /P ,S , -{~-3~@ [{ ~ ,  (0), ( 1 ) ; t ) + 4 [ ( 7 ) , 0 ,  (1);t]7 

1 [11[(37 ) (0~ 1; t ) -F160 (0. (7_), (1);t)+ 17 - [(0).  7 2' 3 3 7' 11 . . . . .  c . . . .  �9 " " 2 ~ 3 '  7 '  l l  ~-, (1);t} 

7 7 7 - ~ 5  --4(11 (-~-), ( 1 ) ; t ] + ( ( ) , ~ - ( 1 ) ; t ] + [ ( ) ,  (~),l;tTbF'~'S, +[(0). (3-), t;t.?.~/ P,~S,+2,.3,.11 3; 

1 7 7 1 [ 1 1 ( ( ~ ) ,  (0), 1 ; t )+2s .5 [0 ,  (~-),  (1 ) ' t ) l  - 4 ~  {(-~, (0), (1);t~-1-4[(~3-),0, (1);t-] t 2 , . 3 , . 7 , .  u , , 

17 7 {_ 
2'.3'.7'-11 { [ (0 ) ,~ ,  (1); t ) +  (~0), ( ) ,  1; t ] ] }P /S ,4  1 {[1.~. (7) ,  ( 1 ) ; t ) + ( , 3 , .  3.(1); t} 2~.3S.li . 

II 7 1 , + [ (T), (g) ,  1; t~}-{P:S,-I- ~-PsS,} (BILl) 

+ .=  {- 3s@73 (0, 0, (0),llt.~- s2a 1 . 31@7, C0, ~_, (~) ,  . 3a-7~ (0, (0), 0, ( 1 ) ; t ] -  e : .3 ' .7 '  (0, (0), (0), 1 ; t ) -  . _ 7 7 

2'.5 7 7 ,  2'-5 7 7 ~_.57, 7 7 (0), (1);t~ (1); t ;+3N7~0, ( - ~ ) ,  (1);t]+3,~7~~.0, ( - ~ ) ,  (-~-),l;t)+ �9 ( - - - ' - - '3  3 

+ 2~'5 r -  7 7 ~ 7 , 7  
3"7 '  T '  (~-),0, (1);t] + ~  { - 3 '  - t~ ) .  (o). i; t ] 

+ 5.80 7 7 5-17 (_ 7 7 7 7 
3 o . 7 , . 1 1 [ - - ~ - , 0 ,  ( ) ,  (1);t~-t 2.3,  75.11t -~-, (0) ,~- ,  ( 1 ) ; t ] + [ - - ~ - ,  (0), ( ~ - ) , l ; t ~  

+ ~ 2 ~ '  [(0).0.0 ' (1) ; t7+3_~((0).0.(0).1;17_a~.172[(0) ' (0).0. t;t7+3_~_~7, ((0). 7 7 3"7 3' 3'  

7 ( 7 ) , 1 ; t ] _  2 7 7 2' 7, 7 0 (1);t]§ @ { ( 0 ) , - ~ - .  ~ ( 0 ) .  (-~-),-~,1;t]+3,-i7 ~ ( ( - Y ) . ~ - ,  , (1);t] 

7 7 7 7 _11 ((_ 7 5.19 ((_T),O, (1);t} 
+3,~73 {(-~-) ,~- ,  (0) .1; t)-3,  7, ~--), ( , ) , 0 , 1 ; t ]  3"7'-11 3-' 

7 7 25.5 ((_ 7 ) ,  7 t3 , .~  [0, O, 5-19 { (_ T ) .  0, t~ (~-), 1; 1; t] } p o+ (0), (1); t ] 3"75"11 3'.7'. 11 (0), ~-, . 

+3,@-{0.  (0).0. (1 ) ; t ]+  1 1 ~ 7 / ( 0 .  (0). (0). 1; t ]  + 3 ~ - 7  ((0). 0. 0. (1); t]  + ~  ((0). 0. i0). 1; t ]  

16 7 7 2.5 7 7 + { (o), (o), o, 1 ; t ~ + ~ - 7 r [ o , - ~ , (  ) , ( 1 ) ; t T - ~ [ o , ( - T ) , ~ - , ( 1 ) ; t ~  

5' 2-5 7 (7 ) ,1 ; t}+  5' _7_ 7 (1);t] {(0), 7 7 
3'-7' (0, (-  ~ ) ,  7i.~c7~.7, ((0), 3 '  3 '  + ~_3s--7~ - ~-. (~-), 1; t] 

1 7 7 5 7 7 2"5 7 7 3 ~ 7' ((0), ( -~- ) ,~- ,  1; t ] - * - ~ [ - ~ - , ~ ,  (0), ( 1 ) ; t ] + - - [ -  (-~-) 0. (1);t] �9 35.7' 3 '  ' 

5 7 7 " t" 22. 17 7 7 17 (_ 7 ) ,  7 
-f- ~ ( -  ~ ,  (~-),  (13), i; .J - ~ ( ( -  =4-), ~-,  O, (1); t~ - --2-35-75 ~ 3 3-' (0), 1; t'i. 

19 i ( _ 7 ) ,  7 
2.3~.7 , (~-), O, 1; t~ -I- 

23"5 ~ 7 7 5.17 7 7 
35.7,.11 [--~-.0, (~--), (1);t~-I 2,.3~.72.11 ~ - ~ -  (0).~-, (1);t] 
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5-17 (_ 7 ( 7 ,  5 .191 7 7 5-191 7 ~ 7 
2,.3s.7,.11 ~-, (0), ~ - ) , l ; t )  2.3,.7~. H ((-, )0,~-, (1);t) 2.3' -7'-11~ (-  ~-)'  0' ,~ - ) , l ; t ]  § 

3'-7z.1122"5 ~(_ ~_),7 (0),37~ , .  1; t~t P~C2+extra terms (B12) 

3~ ~ 2 ~ 7 7 ,  2 " 3 3 7  r  [(0), (0), ( 1 ) ; t ] + j ~ 7 ~ [ ( -  ~-), (~ : ,  ( 1 ) ; t ) t P ~ ~  - [ ( ) ,  (0), (1);t] 

2"5 7 5' ~ 7 7 , t )P•+t  ~ ( ( 0 )  (0), (1);tl ; ( ~ ) ,  ( ~ - j ,  (1): - , + ~ ( ( 0 ) , ( ) , ( 1 )  t l t P , ~  . �9 

+ ~ 2 '  ( ( _ 7 ) ,  (71, , (1) ; t ) /P;C,  ~ t3@.27 , .  II-7--2 )' (0), (1);t) '�9 ~77.7'7112"5 ((0), (7 ) ,  (1);t~t P,'C, 

5 ~(~)  7 1 /11[(3) ,  (0). (1);t/+10~(0) (731 (1) ; t~ip;c ,  (~-), (1);tlP~C~ ~ 2~.3,.7 , 11 22.3~.11 �9 ,. . . . . .  

1 ( ( ~ ) ,  ( 7 )  (l); t]  {P~C,*/2P,"C,/ 0313) 
2'-3" 11 

r t3,@7, (0, <0), (0), (1);t]+3,@73((0),0, (0), < l ) ; t ] + ~ [ ( 0 ? ,  (0).0, (1);t? 

1 2' ~ 7 (_7),  (1 ) ; t )  1_6_6_~(0), 7 ( 7 )  (1) ; t )  + ~  {(0), (0). (0), 1;t~ - ~-7;- ~.0, ( -  ~-), +3~.7 , - ~ .  , 

22"5 7 7 2:'.5 7 7 2-16 7 7 
35.7, ~(0), ( - ~ ) , ~ - ,  ( 1 ) ; t ~ - ~ . ~ [ ( O ) ,  ( -~ ( ) ,  ( ~ - ) , l ; t ~ §  ~ ,  ( ) ,  (0), (1);t~ 

2'-5 { ( _ 7 ) ,  (7 ) .  2'.5 7 7 2s'5 . 7 (7 ) ,0 ,  ( 1 ) ; t ) - ~ y ~  (O),l;t) 

27"5 ~ 7 ~_ _[ 2-5.32 . 7 (0) (37---),(1);t~-35.7,.11[(--~-).0, ( ) ; 1 ) ; t )  
35-7 ' '  11 ~ 3 . . . . .  

22"5"17 ~[(_ 7 7 7 73 3s.7,.11 ~-), (0) ,~,  ( 1 ) ; t ~ §  (0), ( ) , l ; t ) l /P , zS ,+ex t ra  terms (1314 

2 ~ 7 (7 ) ,  (1); (11~(_7) ,  (7 ) ,  (0) (1);t~ r I3,.@ (~-2E(O), (0), (0), (1);t]+16E(O), ( -~ - ) ,  t;~+5,.~Kii.11 
2' 7 (7 ) ,  (1); t~) + 1 0 ~ ( - 7 ) ,  (0), (7 ) .  (1); t)]}p:_~/3_i~ (__ ((0), (0), (0), (1);t]+8((O), ( -~ - ) ,  

2 ~ 2'.5 7 + 3 ~  ~ ( _ 3 )  ' (7 ) ,  (0), ( , ) ; t l + ~  ( ( - ~ ) ,  (0), ( 7 ) .  (1) ; t ) tP :C,+ext ra  terms (]315) 

D r 

f 
G 
K2 
K(r) 
q 

N O M E N C L A T U R E  

rotational diffusivity 
electrohydrodynamic field parameter 
shear rate 
dielectric constant of suspending fluid 
spring constant 
ratio of dielectric constant of macromolecule to 
that of the suspending fluid 
aspect ratio of spheroidal molecule 
end to end vector 

,8 : dimensionless velocity gradient 
A n :  birefringence 
Eo : permittivity of free space 
~' : friction factor 
r~ 2 : viscosity of suspending Newtonian fluid 
X : extinction angle 
It(8, ~ ;t) : orientation distribution function 
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